正数与负数教案6篇

时间:2024-08-18 作者:Animai

教师们在教案中应设计多样化的活动,以满足不同学生的需求,通过有效的教案,教师们可以提高学生的参与度和学习兴趣,淘范文网小编今天就为您带来了正数与负数教案6篇,相信一定会对你有所帮助。

正数与负数教案6篇

正数与负数教案篇1

正数与负数

【教学目标】

了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。

【内容简析】

本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。

【流程设计】

一、情景创设

1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?

2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°c,10°c,零下10°c,零下30°c。

为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?

二、新知探索

1.教师由以上实例归纳出正数与负数的描述性概念。

像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。

给出板书:

正数——大于0的数

负数——正数前面加“-”号的数(小于0的数)

0——既不是正数,也不是负数

说明:①负数前面的“-”号的读法,“-5”应读作“负5”;

②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;

③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。

小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。

三、范例共做

例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:

-11,4.8,+7.3,0,-2.7,-8.12

正数集合负数集合

例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:

正数集合{ }

负数集合{ }

注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。

例3:规定向前走为正,两个学生一组做游戏,如

甲:向前走2步乙:2

甲:向后走3步乙:-3

甲:-4乙:向后走4步

甲:0乙:原地不动

注:通过设计类似的游戏活动使学生加深对负数的认识。

四、巩固练习

1.-10表示支出10元,那么+50表示

如果零上5度记作5°c,那么零下2度记作

如果上升10m记作10m,那么-3m表示;

太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。

比海平面高50m的地方,它的高度记作海拨;

比海平面低30m的地方,它的高度记作海拨;

2.下面说法正确的是()

a.正数都带有“+”号

b.不带“+”号的数都是负数

c.小学数学中学过的数都可以看作是正数

d.0既不是正数也不是负数

3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。

4.某物体向右运动为正,那么-2m表示,0表示。

5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。

五、小结提高

1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;

2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。

六、课后思考

1.-a一定是负数吗?

2.在月球表面,“白天”的温度可达127°c,太阳落下后的“月夜”气温竟下降到-183°c,请问在月球上温差是多少度?

正数与负数教案篇2

补充练习2:判断下列说法对错:

a.向南走-60米表示向西走60米()

b.节约50元与浪费-30元是互为相反意义的量()

c.快与慢表示具有相反意义的量()

d.+15米就是表示向东走15米()

e.黑色与白色表示具有相反意义的量()

f.向北4.5米和向南8米是具有相反意义的量()

补充练习3:用正负数表示下列具有相反意义的量。

(1)温度上升3℃和下降5℃。

(2)盈利5万元和亏损8千元。

(3)运进50箱与运出100箱。

(4)向东10米与向西6米。

五、课后练习

1、课本p7第1、2、3.

六、补充练习:

2、下面各数哪些是正数?哪些是负数?

5,+1,0.07,-1.414,1.98%,0,-20%,-1000,11/9,0.001

3、如果一个物体沿东西方向运动,若规定向西为负,向东为正,

(1)向东运动5米和向西运动10米各怎样表示?

(2)-30米和50米各表示什么?(3)物体原地不动怎样表示?

4、说出下列每句话的意义。

(1)小明在围棋比赛中输了-5盘。(2)今晚的气温升高了-3℃。

(3)电梯下降了-4层。(4)李华体重增加了-2公斤

正数与负数教案篇3

教学内容:

正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。

教学目的:

1、 教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。

2、 能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、 了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的相反数。

4、 掌握绝对值的表示法,给一个数,会求它的绝对值。

教材分析:

本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。

教学课时:

约6课时。

教学准备:

小黑板、投影片。

1、 正数和负数

教学内容:完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。

教学目的:

1、 认识正数和负数,会用正数和负数表示一些常见的数量。

2、 培养学生对相对的理解,培养创新的思维品质。

教学重点:

负数的认识是本课的重点。

教学过程:

一创设情景:

师:我们已经学过哪些数?

出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?

二探究新知:

1师:你会读这些数字吗?试一试.

师:像-1、-4、-8……这样的数都是负数。

师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。

2自学课本第二页的内容。

师:你还能举出一些正、负数的例子吗?

3教学例题

出示例题,读题后说一说自己的想法。

明确:海平面以上用正数表示,海平面以下用负数表示。

4试一试

完成试一试的相关题目。

三巩固拓展

1完成练习一a组的1-7题。

第4题要重点订正。

2完成练习一b组的第1、2、3题。

四小结

师:本节课你有什么收获?

正数与负数教案篇4

教学目标

1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2,能区分两种不同意义的量,会用符号表示正数和负数;

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点

正确区分两种不同意义的量。

知识重点

两种相反意义的量

教学过程

(师生活动)设计理念

设置情境

引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些以前学过的数够用了吗?下面的例子

仅供参考。

师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是xx,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知问题3:前面带有一号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解。

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

这阶段主要是让学生学会正数和负数的表示。

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:

一是它们的意义相反,如向东与向西,收人与支出;

二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

问题4:请同学们举出用正数和负数表示的例子。

问题5:你是怎样理解正整数负整数,,正分数和负分数的呢?请举例说明。

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习教科书第5页练习

小结与作业

正数与负数教案篇5

[教学目标]

1. 掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;

2. 体验数学发展的一个重要原因是生活实际的需要;

3. 激发学生学习数学的兴趣.

[教学重点与难点]

重点:两种相反意义的量.

难点:正确区分两种不同意义的量.

[教学设计]

[设计说明]

一.创设情境 激发好奇

欢迎同学们来到附中,成为初一年级的一名学生,从今

天开始,我将带领大家开始神奇的数学之旅。

在我们的这个教室中就有许多数学的应用,我们在一个长约为12米,宽8米的教室里,多数同学都是13岁,我们班54人,占全年级人数的8%,我们的讲台宽0.8米,高1.2米…….

[问题1]:在老师刚才的描述中出现了你所熟悉的哪几类数字?你能将以前所学数字进行分类吗?(学生交流后回答)

以前我们学过的数,实际上主要有两类.分别是整数和分数(包括小数).

[问题2]:那么在实际生活中仅有整数和分数够用吗?你能举例说明吗?

二.观察对比 探究新知

[问题3]:我们将前面带有"-"的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?结合下面的短片我们去理解.(课件)

三.甄别应用 拓展思维

[问题4]:请同学们举出用正数和负数表示的例子.

[问题5]:你怎样理解"正整数""负整数""正分数""负分数"呢?

[巩固练习]

(教科书5页练习)

1. 读下列各数,并指出其中哪些是正数,哪些是负数。

-1,2.5,+ ,0,-3.14,120,-1.732,- .

2.80m表示向东走80m,那么-60m表示 .

3.如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作 m.水位不升不降时水位变化记作 m.

4.月球表面的白天平均温度零上126°c.记作 °c,夜间平均温度零下150°c,记作 °c.

[小结]

从学生身边熟悉的数据入手,回顾小学学过数的类型.

通过举例发现生活中具有相反意义的量,说明引入负数的必要性.

利用课件是学生体会负数的应用,以及正数和负数在表示具有相反意义的量的作用.

通过举例,得出正整数,负整数,正分数,负分数的定义.

通过练习,讨论,明确0的归属(0即不是正数,也不是负数).

练习中注意纠正学生的错误读法和语言的不准确性.

1.由于实际问题中存在着相反意义的量,所以引如负数,那么数的范围扩大了;

2.正数就是以前学过的除0之外的数,负数就是在以前学过的除0以外的数前加-号的数.

[作业]

必做题:教科书7页习题:1,2,4题

思考

1.(教科书7页3题)"不是正数的数一定是负数,不是负数的数一定是正数"的说法对吗?

2.学习了负数,对你有什么样的启迪,你有什么感悟?

[备选题]

1.某年度某国家有外债10亿美元,有内债10亿美元,应用数学知识来解释说明,下列说法合理的是( )

a.如果记外债为-10亿美元,则内债为+10亿美元

b.这个国家的内债、外债互相抵消

c.这个国家欠债共20亿美元

d.这个国家没有钱

2.在下列横线上填上适当的词,使前后构成意义相反的量:

(1)收入1300元, 800元;

(2) 80米,下降64米;

(3)向北前进30米, 50米.

3.观察下列排列的每一列数,研究它的排列有什么规律?并填出空格上的数.

(1)1,-2,1,-2,1,-2, , , ,…

(2)-2,4,-6,8,-10, , ,…

(3)1,0,-1,1,0,-1, , , ,…

小结可以结合前面的例子,而关于0的讨论也可以在前面举例出现时讨论.

作业要求格式,书写,抄题.

可以用一些有哲理的话启发学生,并让学生将自己的感悟语言写在作业本后面.

备选题为提供给教师的,可以根据学生接受的情况选用.

另一份:

正数和负数(第1课时)

教学任务分析

学习目标:

1、知识技能:了解正数和负数是怎样产生的;知道什么是正数和负数;理解数0表示的量的意义。

2、数学思考:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

3、解决问题:会用师生合作,联系实际,激发

重点:正、负数的意义。

难点:负数的意义及0的内涵。

课前准备

温度计、文具盒

教学流程安排

活动流程及活动内容和目的

活动1 问题引入 通过活动使学生了解数起源于生活。

活动2 活动安排 使学生进入问题情境。从而引出问题。

活动3 举例说明 用更多事例,丰富问题情境。

活动4 学习负数的概念 说明什么是正、负数。

活动5 负数概念的应用 进一步认识正数和负数。

活动6 负数概念的巩固 全面认识正数和负数。

教学过程设计

活动1

1、请同学们数一数自己的文具盒中共有几支笔。(若干支笔)

2、请一个同学数一数老师手中的文具盒中有几支笔。(没有笔)

3、用一把小刀把一个苹果切成两半,半个苹果怎样用一个数来表示?

4、书p4 图1 .1-1 自然数的产生、分数的产生

师生行为及设计意图

通过活动说明数的产生和发展离不开生活和生产的需要。原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用"0"表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。通过创设情景问题,向学生渗透"实践第一"的辨证唯物主义观点。

活动2

1、各组派两名同学进行如下活动:一名同学按老师的指令表演,另一名同学在黑板上速记,看哪一组获胜。

2、 各小组研究各自手中的温度计上刻度的确切含义,然后各小组派一名说出其中三个刻度的含义,请另一组一名同学在黑板上速记。看哪一组获胜。

师生行为

1、 教师说出指令:向前两步,向后两步;

向前一步,向后三步;

向前四步,向后一步;

向前四步,向后两步。

一名学生按老师的指令表演,另一名学生在黑板上速记。

2、 一名同学说出指令:零上10℃,零下5℃,零上35℃。

零上15℃,零上48℃,零下12℃。

另一名学生按指令在黑板上速记。

设计意图

通过学生的活动,激发学生参与课堂教学的热情,使学生进入问题情境,引入新课。

教师分析同学们的活动情况,如果学生不能引入符号表示,教师也参与表演。用符号表示出 :+2、-2、+1、-3、+4、-1、+4、-2、+10、-5、+35、+15、+48、-12等,让学生感受引入符号的必要性。

活动3

问题展示

1、 天气预报2003年12月某天北京的温度为―3~3℃,它的确切含义是什么?这一天北京的温差是多少?

2、 某机器零件的长度设计为100㎜,加工图纸标注的尺寸为100±0.5(㎜),这里的±0.5代表什么意思?合格厂品的长度范围是多少?

3、 有三个队参加足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?

师生行为

教师解释净胜球数与排名顺序:介绍确定足球比赛排名顺序的规定:两队积分不相同,积分高的队排名在前;两队积分相同,净胜球多的队排名在前;两队积分,净胜球数都相同,进球多的队排名在前。按照上述规定,红队第一,蓝队第二,黄队第三。

学生思考-3~3℃、净胜球数与排名顺序、±0.5的意义。

设计意图

通过事例引出用各种符号表示的数,让学生试着解释,激发学生的求知欲望,让不同水平的学生都在进行积极的思维参与,兴致勃勃地参与学习活动。同时对问题背景作些说明,有利于学生对问题的理解。使学生感到数的扩充势在必行,扩充的理由是社会生产,生活的需要及数学自生发展的需要。

活动4

1、 在师生活动中和问题中出现了一些新数据:-3、-2、-5、-12、-0.5它们表示什么含义?

2、 我们小学知道,数0表示没有,仔细观察上述的各例子,数0都表示没有吗?数0是正数吗?是负数吗?

师生行为

教师讲解:我们把这种前面带有"-"号的数叫做负数。并说明:为与负数相区别,我们把以前学过的0以外的数,例如3、2、0.5等,叫做正数,根据需要,有时在正数前面也加上"+",例如,+2、+3、+0.5。就是3、2、0.5。一个数前面的"+""-"号叫做它的符号。

教师说明数0的意义。数0既不是正数,也不是负数,0是正数与负数的分界。0℃是一个确定的温度,海拔0表示海平面的平均高度。0的意义已不仅是表示"没有"。

设计意图

在出现若干个新数后,采用描述性定义,并与小学学过的数对比,有利于学生理解概念。采用联系对比的方法,采取轻松的态度,尽量避免使概念复杂化。

活动5

展示问题

1、学生举例说明正、负数在实际中的应用。

2、在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0)。通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为-155米。它表示什么含义?

3、记录帐目时,通常用正数表示收入款额,负数表示支出款额。则收入254元可记为多少元?支出56元可记为多少元?

4、 p5 图1、1-2 1、1-3

师生行为

教师安排学生分小组活动:举一些实际中用正数、负数表示数量的例子。

学生分组相互交流并推选代表发言。

教师与同学一起对各代表的发言进行评价。

教师解释:把0以外的数分为正数和负数,起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用。例如,在地形图上表示某地的高度时,需要以海平面为基准。

设计意图

通过师生活动使学生真正理解正、负数,从而正确使用正、负数。使学生感到,数的每一次发展都是为了满足社会生产与生活的需要。

正数与负数教案篇6

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

教学重点:

深化对正负数概念的理解.

教学难点:

正确理解和表示向指定方向变化的量.

教与学互动设计:

(一)知识回顾和理解

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

[问题1]:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考“0”在实际问题中有什么意义?

归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

如:水位不升不降时的水位变化,记作:0 m.

[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

(二)深化理解,解决问题

[问题3]:(课本p3例题)

?例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

?例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的'量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

巩固练习

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247,孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

阅读与思考

(课本p6)用正数和负数表示加工允许误差.

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

(三)应用迁移,巩固提高

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

星期一二三四

增减-5 +7 -3 +4

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用.

(四)课时小结(师生共同完成)