六年级反比例教案6篇

时间:2023-05-02 作者:loser

经过多年的工作经历,教师制定教案的能力一定都有所加强,教案是教师为了提高教学水平提早起草的教学文书,以下是淘范文网小编精心为您推荐的六年级反比例教案6篇,供大家参考。

六年级反比例教案6篇

六年级反比例教案篇1

教学目标:

1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

2、培养学生的逻辑思维能力

3、感知生活中的数学知识

重点难点

1、通过具体问题认识反比例的量。

2、掌握成反比例的量的变化规律及其 特征

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、课前预习

预习24---26页内容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么共同点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

二、 反馈与检测

1、判断下面每题是否成反比例

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”p33第1题。

3、教材“练一练”p33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

板书设计: 反比例

两个相关联的量,乘积一定,成反比例

关系式:x×y=k(一定)

课后反思:

本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。

六年级反比例教案篇2

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

教学重难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)

1:90

2:180

3:270

4:360

5:450

6:540

7:630

8:720

1.写出路程和时间的比并计算比值.

(1)2表示什么?180呢?比值呢?

(2)这个比值表示什么意义?

(3)360比5可以吗?为什么?

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

六年级反比例教案篇3

教学目标:

1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;

2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;

3、利用多媒体动画的演示,让学生体验到反比例的变化规律。

教学重点:感受反比例的变化,概括反比例的意义;

教学难点:正确判断两种相关联的量是否成反比例;

教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)

每次拿的支数

10

5

4

2

1

拿的次数

总支数

教学过程:

一、复习

1、什么叫做“成正比例的量”?

2、判断两种量是否成正比例关键是什么?

3、练习:课本表中的两种量是不是成正比例?为什么?

二、小组协作 概括“成反比例的量”的意义

(一)活动??

师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!

1、学生汇报观察记录单的填写结果。

2、引导观察:在填、拿的过程中,你发现了什么?

3、师:你能根据表格,写出这三个量的关系式吗?

4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。

5、揭示反比例的意义(阅读课本,明确反比例关系)

6、如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?

(二)活动二:(例3)

1、课件出示例3,指名读题,学生独立完成

2、总结归纳出正比例和反比例的相同点和不同点

三、强化练习 发展提高

1判定两个量是否成反比例,主要看它们的( )是否一定。

2全班人数一定,每组的人数和组数。

( )和( )是相关联的量。

每组的人数×组数=全班人数(一定)

所以( )和( )是成反比例的量。

3判断下面每题中的两种量是不是成反比例,并说明理由。

糖果的总数一定,每袋糖果的粒数和装的袋数。

煤的总量一定,每天的烧煤量和能够烧的天数。

生产电视机的总台数一定,每天生产的台数和所用的天数。

长方形的面积一定,它的长和宽。

4机动练习:

想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?

四、全课总结

1、你能不能结合日常生活举一些反比例的例子。

2、今天这节课,你有什么收获?还有什么遗憾?

六年级反比例教案篇4

教学目标

(一)教学知识点

1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

教学难点

领会反比例函数的意义,理解反比例函数的概念.

教学方法

教师引导学生进行归纳.

教具准备

投影片两张

第一张:(记作5.1a)

第二张:(记作5.1b)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b,其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式,如从a地到b地的路程为1200km,某人开车要从a地到b地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

Ⅱ.新课讲解

[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?

1.复习函数的定义

[师]大家还记得函数的定义吗?

[生]记得.

在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.

[师]大家能举出实例吗?

[生]可以.

例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.

等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.

[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.

[师]请看下面的问题.

电流i,电阻r,电压u之间满足关系式u=ir,当u=220v时.

(1)你能用含有r的代数式表示i吗?

(2)利用写出的关系式完成下表:

r/Ω20406080100

i/a

当r越来越大时,i怎样变化?当r越来越小呢?

(3)变量i是r的函数吗?为什么?

请大家交流后回答.

[生](1)能用含有r的代数式表示i.

由ir=220,得i=.

(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.

从表格中的数据可知,当电阻r越来越大时,电流i越来越小;当r越来越小时,i越来越大。

(3)变量i是r的函数.

由ir=220得i=x,当给定一个r的值时,相应地就确定了一个i值,因此i是r的函数.

[师]这位同学回答的非常精彩,下面大家再思考一个问题.

舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.

[生]根据i=,当r变大时,i变小,灯光较暗;当r变小时,i变大,灯光较亮.所以通过改变电阻r的大小来控制电流i的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.

投影片:(5.1a)

京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.

[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.

[师]从上面的两个例题得出关系式

i=和t=

它们是函数吗?它们是正比例函数吗?是一次函数吗?

[生]因为给定一个r的值,相应地就确定了一个i的值,所以i是r的函数;同理可知t是v的函数,但是从表达式来看,它们既不是正比例函数,也不是一次函数.

[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?

[生]可以.由i=与t=可知关系式为y=(k为常数且k≠0).

[师]很好.

一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.

从y=中可知x作为分母,所以x不能为零.

3.做一做

投影片(5.1b)

1.一个矩形的面积为20cm2,相邻的两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

3.y是x的反比例函数,下表给出了x与y的一些值:

x-2-1

13

y

2-1

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表.

[生]由面积等于长乘以宽可得xy=20,则有y=x,变量y是变量x的函数,因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数。

[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=x,给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=符合反比例函数的形式,所以是反比例函数。

[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件。同理,在求反比例函数的表达式时,实际上是要确定k的值,因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察,由x=-1,y=2确定k的值,然后再根据求出的表达式分别计算x或y的值。

[生]设反比例函数的表达式为

y=.

(1)当x=-1时,y=2;

∴k=-2.

∴表达式为y=-.

(2)当x=-2时,y=1.

当x=-时,y=4;

当x=时,y=-4;

当x=1时,y=-2.

当x=3时,y=-;

当y=时,x=-3;

当y=-1时,x=2.

因此表格中从左到右应填

-3,1,4,-4,-2,2,-.

Ⅲ.课堂练习

随堂练习(p131)

Ⅳ.课时小结

本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.

Ⅴ.课后作业

习题5.1

Ⅵ.活动与探究

已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?

分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1==k(x+2),由x=1、y=4确定k的值.从而求出表达式.

解:由题意可知y-1==k(x+2).

当x=1时,y=4.

所以3k=4-1,

k=1.

即表达式为y-1=x+2,

y=x+3.

由上可知y是x的一次函数。

六年级反比例教案篇5

教学目标

1.经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2.理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3.使学生会画出反比例函数的图象。

4.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点

1、使学生了解反比例函数的表达式,会画反比例函数图象

2、使学生掌握反比例函数的图象性质

3、利用反比例函数解题

教学难点

1、列函数表达式

2、反比例函数图象解题

教学过程

教师活动

一、作业检查与讲评

二、复习导入

1.什么是正比例函数?

我们知道当

(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2)当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)

创设问题情境

问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:

1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大

2.自变量v的取值是v>0.

问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.

分析根据矩形面积可知

xy=24,即

从这个关系中发现:

1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

2.自变量的取值是x>0.

三、新课讲解

上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).

说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.

2.反比例函数的解析式又可以写成:(k是常数,k≠0).

3.要求出反比例函数的解析式,只要求出k即可.

实践应用

例1下列函数关系中,哪些是反比例函数?

(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

(2)压强p一定时,压力f与受力面积s的关系;

(3)功是常数w时,力f与物体在力的方向上通过的距离s的函数关系.

(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

例2当m为何值时,函数是反比例函数,并求出其函数解析式.

例3将下列各题中y与x的函数关系与出来.

(1),z与x成正比例;

(2)y与z成反比例,z与3x成反比例;

(3)y与2z成反比例,z与成正比例;

例4已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y的值.

分析因为y与x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值.

例5已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

小结

一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).

要求反比例函数的解析式,可通过待定系数法求出k值,即可确定.

练习2

1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?

(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;

(2)体积为100cm3的长方体,高为hcm时,底面积为scm2;

(3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;

(4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.

2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值.

3.已知y=y1+y2,y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.

4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm.

(1)写出用高表示长的函数式;

(2)写出自变量x的取值范围;

(3)当x=3cm时,求y的值.

5.试用描点作图法画出问题1中函数的图象.

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.

二、探究归纳

1.画出函数的图象.

解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问这两条曲线会与x轴、y轴相交吗?为什么?

画出反比例函数的图象

1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当kt;0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注1.双曲线的两个分支与x轴和y轴没有交点;

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值.

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1t;0,由这两个条件可解出m的值.

解由题意,得解得.

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.

例3已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;

(2)若点a(-5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?

例4已知函数为反比例函数.

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3≤x≤时,求此函数的最大值和最小值.

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象.

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

小结

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

2.反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当kt;0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、课堂练习

1.在同一直角坐标系中画出下列函数的图象:

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数经过点a(2,-m)和b(n,2n),求:

(1)m和n的值;

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1t;0t;x2,试比较y1和y2的大小

四、课后作业布置

课后练习卷一份

六、课后教学反思

六年级反比例教案篇6

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1.出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3.小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2

1.出示例2,根据题意,学生口述填表。

2.教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1.请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2.教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书: xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)